
Journal o f  Statistical Physics, VoL 12, No. 3, 1975 

Transmission of Information 
in Nucleotide Pools: 
Application of the Statistical 
Thermodynamic Formalism 
A l e x a n d r  K ? e m e n  ~ 

Received July 8, 1974 

Starting from information theory ideas, the probabili ty distribution of 
nucleotide molecules in a pool is derived, using the Kullback information 
measure. A statistical thermodynamic formalism leads to analogs of 
thermodynamic functions like entropy and Helmholtz free energy, and to 
equations describing their changes. If  information transmission is a maxi- 
mum, these analogs have certain interesting properties. The general case is 
investigated, when both  the actual and the prior distributions change. 
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1. I N T R O D U C T I O N  

T h e  c r e a t i o n  a n d  m a i n t e n a n c e  o f  o r g a n i z a t i o n  in  l iv ing  m a t t e r  a r e  p r o c e s s e s  

g e n e r a l l y  r e q u i r i n g  t he  s u p p l y  o f  b o t h  e n e r g y  a n d  i n f o r m a t i o n .  F o r  m a n y  

r e a s o n s ,  i n c l u d i n g  h i s t o r i c a l  ones ,  t h e  e n e r g e t i c  a s p e c t  h a s  d r a w n  m u c h  m o r e  

a t t e n t i o n .  W h i l e  i t  is t r u e  t h a t  f o r  s o m e  p r o c e s s e s  t h e  i n f o r m a t i o n a l  a s p e c t  is 
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less important, there are, however, certain very important processes where it 
should not be neglected. The role of nucleotide pools (the explanation of this 
concept is given later in this section) in energy utilization in living systems and 
the use of nucleotides as building units for certain important molecules such 
as nucleic acids and for some other structures in the cell make these pools 
objects of primary interest from both the energetic and informational points 
of view. In this paper, an attempt is made to describe these pools in terms of a 
statistical thermodynamic formalism based on information theory ideas. The 
description applies to more general systems of this kind as well. 

The use of a statistical thermodynamic formalism in the solution of 
information theory problems is due to Reiss and Huang. (1~ In contrast to 
their work, Kullback's information measure is used here rather than 
Shannon's. This is necessary in applications to living systems, as will be 
shown in the next section. The applications are discussed elsewhere. (2~ 

For readers not familiar with the concept of a nucleotide pool, an ex- 
planation is given here. Consider a system of particles (molecules), each of 
which can occupy any of a finite number s of energy levels. The number of 
particles occupying any level is not limited. Transitions between the levels 
result from some kind of interaction, as, for example, chemical reactions. The 
system is open, since the particles may be added to or withdrawn from the 
system, generally regardless of which level is involved. In nucleotide pools, 
s = 3, and the particles occupying the three levels are called (in the order of 
increasing energy) monophosphates, diphosphates, and triphosphates. There 
are several pools working in living matter, for example, the adenylates, 
guanylates, etc. Of these, the adenylate pool is the most universal, the other 
pools having more or less specialized functions. Briefly, they all serve as 
media for storage and distribution of energy, and supply molecules for syn- 
thesis of certain important, more complicated molecules. The population of 
the energy levels is usually far from thermodynamic equilibrium. The actual 
state of any pool depends on the physiological conditions of the living system 
of interest. 

2. K U L L B A C K  I N F O R M A T I O N  M E A S U R E  

In this section, we give arguments in support of the use of the Kullback 
information measure. For any pool, the population of the energy levels can 
be expressed as a probability distribution {p~}, which in turn represents some 
degree of organization. There are two elements of asymmetry in the time 
development of this organization. First, the least organized state of the pool 
is achieved at thermodynamic equilibrium, at which, of course, the probability 
distribution {p~0~} may be different from the set {1/3, 1/3, 1/3) for which the 
Shannon entropy is maximum. Second, the most organized state is, due to the 
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energy differences between the levels, that corresponding to all nucleotide 
molecules excited to the highest--triphosphate--level. The corresponding 
probability distribution is {p~'~} = {0, 0, 1}. If  the role of the pools in living 
matter is taken into account, it is reasonable to require that no information be 
conveyed by a pool in thermodynamic equilibrium and maximum informa- 
tion be conveyed in the most excited state. These two elements of asymmetry 
lead to the use of the Kullback information measure, the amount of con- 
veyed information being identical with the information gain in the usual 
terminology. The corresponding formulas are (a) 

I (p;  p(O>) = ~ ~ p~ log(pjp  O,) (1) 

for the information gain, and 

U = I(p(m); p(O>) _ I (p  ; p(O)) (2) 

for the entropy or uncertainty. In the following, {p(O)} will be called the prior 
distribution, in agreement with common usage, although a name like refer- 
ence distribution would be perhaps more appropriate here. 

3. P R O B A B I L I T Y  D I S T R I B U T I O N  

The concept of information transmission is a basic one in the present 
paper. For this reason, the derivation of the probability distribution in the 
pool starts from the concepts of a message, a source, and a channel, in rela- 
tion to the role of nucleotide pools. The line of reasoning resembles very 
closely that of the work by Reiss and Huang. m 

Messages are defined as sequences of symbols, which, in this case, are 
molecules of the pool. Subsequent symbols in a message may be correlated; 
the messages, on the contrary, are supposed long enough to be substantially 
uncorrelated. The pool is thus considered as a source emitting messages, the 
kth message with probability Pk- The processes in which the molecules of the 
pool take part comprise a channel (or a set of parallel channels), the proper- 
ties of which may be identified with a coding procedure. For the kth message 
they define a characteristic quantity T~ (or a set of quantities Tk, Wk .... ) and 
a "channe l"  probability P / .  In the following, only one characteristic quan- 
tity T~ will be considered and interpreted as the transmission time of the kth 
message, in agreement with the work cited. (1~ In principle, the characteristic 
quantities may have certain other physical dimensions as well. The proba- 
bilities Pk and Pk' are generally different; however, the laws of chemical 
kinetics, of transport, etc., provide for mutual matching of the source and the 
channel, so that P~ = P / ,  and the source works most efficiently in the sense 
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that the most typical message composed by the source is also the most 
typical message composed by the channel. 

If source and channel are matched, the probability distribution of the 
messages can be found by maximizing the entropy (2) subject to certain 
constraints. (a) These are two in this case: A given quantity J -  must be com- 
posed of an integer number of the Te's, that is, 

~r = ~ N,~T,~ 
k 

where Nk is the number of  messages of the kth type. Another constraint, 
which turns out to limit information transmission, requires that the total 
number of messages Jr" fitting into ~- be fixed, 

d r  = ~ N ~  
k 

Without this constraint, an equal or greater number of messages fits into 
~.. The absence of this constraint therefore corresponds to maximum trans- 
mission of information. Thus one looks for the extremum of the expression 

r  ~Nn l o g ( ~ / , ( 0 , ) )  

The last term (~2 + K)(...) is missing if ~k N~ is not fixed. The probabilities P~ 
were identified with the frequencies, 

The coefficients (f2 + K) and 1/K.r are the undetermined multipliers; 
IM(m; 0) denotes the maximum information gain in case of the message 
distribution. The condition for an extremum is 

Or = 0 

This is equivalent to 

a r  = o 

if .4 r is fixed. If  this constraint is lifted, 

OP,JaN~ = (6,~ - P,~)/~ Nk 

where 

6,~ = 1 if i = n 
= 0 otherwise 
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Then we get 

Pk = e~0) e x p ( -  Tk/~r), Q = ~ e~o, exp ~ (3) 
a /r Kq" 

if ..4/. is fixed, and 

Q* = exp[--IM(m; 0)/K] (4) 

if Y.k Nk is not fixed; it is now seen that this condition determines maximum 
information transmission at given ~-. 

Now let all messages be composed of the same number n of symbols, and 
let the mean characteristic quantities t~ of the ith symbol be the same 
regardless of the message; then 

where n~g is the number of times t he / th  symbol appears in the kth message. 
In this approximation the symbols are effectively uncorrelated (the source is 
without memory) and their probabilities can be written as 

p, = p~O> e x p ( -  t,/~')/q, q = ~ p~O~ e x p ( -  tdK,) (5) 
i 

if  ,A/" is fixed, and 

q* = p(3 ~ (6) 

if ~ Nk is not fixed [since, for nucleotide pools, only one message consisting 
exclusively of triphosphates contributes to Ix(m; 0), 

IM(m; 0) = --K 1og(p~0~)" 

and (6) results by (4) and Q = q"]. 

4. A N A L O G S  OF T H E R M O D Y N A M I C  F U N C T I O N S  

The formulas (3) and (5) resemble those known from statistical thermo- 
dynamics (except for the use of  the prior distribution). This is not the only 
reason analogs of some thermodynamic functions are derived here. These 
analogs have interesting properties at maximum information transmission. 
In the following, advantage is taken of the use of  Kullback information 
measure and the general case is treated, when both the actual distribution 
{p~} and the prior distribution {p~O)} change. Sporulation (a change from an 
open to a closed system) can be given as an example for which such a treat- 
ment can be useful. 
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With regard to notation, a symbol in angular brackets denotes the mean 
value of the corresponding quantity, as, for example, 

( t ) = ( t~) = ~ p,ti 

An asterisk refers to the condition of maximum transmission of information, 
as in (6) or (4). The symbol ( t ) '  denotes the time derivative of ( t ) ,  whereas 
( t ' )  = ~ p,t~' is the mean value of time derivatives of the quantities t~. 

By (2) and (5) or (6), the entropy is 

U =  I(m; 0) + ( ( t ) / z )  + K logq, U* = ( t ) / z  (7) 

I(m; 0) is the maximum information gain in case of the probability distribu- 
tion of the symbols, i.e., in the pool. 

The analog of the Helmholtz free energy is 

F = ( t )  - ~'U = -~'[I(m; 0) + K logq] = -K~-(logq - logp(8 ~ (8) 
F* = 0 

It is interesting to note that if more characteristic quantities, say t~, w~ .. . .  , 
determine the distribution (together with corresponding 7t, ~- . . . . .  ), then only 
in case of maximum information transmission is a simple definition of F 
possible, and both U and F split into separate parts, each one for one of the 
variables, as 

ut* = (t)l t, uw* = (w l w . . . .  

Ft* = ( t )  - "rtUt* = O, Fw* = ( w )  - %Uw* = 0 . . . .  

Considering time changes, it is convenient to derive the relations using 
the function F, since F* = 0. The function F is a function of the variables 
q, p(3 ~ and z; q is a function ofp~ ~ p(3 ~ tl, t2, t3, r ;  and each t~ is generally a 
function of p2, P3, p~O~, p(3O>, ~., and, in addition, of some external parameters 
xj. Then 

F' a F [ ~ a q [ a t ,  , at, , a t ~ /  ~ a t ,  , 

at~ (o>, at, ,(o>,] aq ~., aq .(o>, aq ,(o>,] 
] 

OF ~., OF (o), 
+ ~ + ~ P3 (9) 

We define analogs of thermodynamic chemical potentials 

/ z k - / z l  = -m-~-~p logq : ~ p , ~  = , k =  2,3 (10) 

= at, / at \ ,  
= ~ k o )  / k = 2, 3 (11) 
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and analogs of pressure 

~r, = ~" logq = -z?'~ P' ~-~x~ = - ~'-~x~- 

Noting that 

8F(~SqOh ~q) OF ~q G N + ~  +~  

d 
= - K(log q - log pta ~ - KT ~ log q 

F +  ~" ~ P i  ~ U 
7" 

we see that the relation (9) reads 

F '  = (/-~2 - / ~1 ) P2 '  + (/z3 - -  /~)Pa' + ~ - U 

I f F '  = 0, 

, / t  

- ~ .. ,x;' + (.go) _ .iO,)p~O,, + ( . ? ,  _ ~?,)p,O,. 
J 

- t \p~O) ~,1,,~ - \  p,O, + p l O , U ~  I 

( m - m ) p d + ( ~ - m ) p d +  G - u  ~' 

- ~ ~ x , '  + (#o~ _ ~iO~)p~O), + ( ~ o ,  _ ~?,)p,g, ,  
J 

Kr[iP2 PlY_to,, [ 1 - p a  Pl ] ,,(o,,] 

(12) 

(13) 

(14) 

This equation describes time changes of the variables if they are mutually 
related. If the prior distribution changes independently, (14) splits into two 
relations 

( ~  - ~ l ) p ~ '  + (~3 - ~ 3 p 3 '  + - u . '  - ~ = o 
) 

( t @  - t.i~ ~ + (,go~ _ t~iO~)p~O). (15)  

K r [ [  122 Pl  ~ (o,, [1 - Pa Pl  ] . , o , , ]  = 0 
-- LkphO, Fo~o,} p= - \ ~  + 71o~je3 ] 

If the prior distribution changes follow the condition 

phO), dp~O) [(1 -p3)/p~a~ + (pffp~O)) 
p(aO~, -- dp(aO) (p2/p~ m) - (pffp(1 ~ (16) 
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then also 

dp~O~ ~o~ _ ~o~ 
dv(O ~ - tz~o ~ _ tz~o ~ (17) ' / J 3  

The first equation (15) relates the changes of  the actual distribution to changes 
of  ~- and of the parameters xj. I f  all variables were independent, (15) would 
imply a steady state. 

From (7), by direct computation, 

( t /  ( t )  ~-' 
U' = K(log q - log p(a~ ' + - -  

T '7" T 

F , F '  ( t> '  <t> z' 
T 2 T ~ T T 

[ / p c o , , \  p~O),] (t>' (t'> 

= Uo' + ( t ) '  (t'> (18) 
7 

since 

In (18), 

x(log q)' = K -- = x ~ *'~ ,c ~ .  p~ 
q q "7' \Kz/  

/ p ( O ) , ~  ( t ' )  + ( t ) ~ "  
= - 7 -  -7-  7 

K[[P2  Pl ~.(o~, [ 1 - p a  Pl '~ ~(o,,] 

and (16) is a condition for Uo' = O. With this condition, 

�9 V'  = ( t ) '  - ( t ' )  (19) 

Comparison with the equation of thermodynamics representing the com- 
bined first and second laws shows that ~- is an analog of absolute tempera- 
ture, (1~ ( t )  is an analog of internal energy, and - ( d t )  is an analog of 
infinitesimal work. 

I f  information transmission is maximum, F = 0 and, by (18), 

r U * '  = ( t ) '  - ( ( t ) / ~ - ) . r '  - F '  (20) 

Combining (19) and (20), we obtain 

( t ' )  = ( ( t ) / r ) r '  = U * r '  + F '  (21) 
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Relation (21) is equivalent to 

(( t l ,~) ' )  = F ' I ~  

Finally, (13) can be written as an analog of the Gibbs equation 

/ a t "x,~ , 
( t ) '  = ~-u*' + \ ~ /  - ~ ,  ~,x,'  + 0,2 - ~1)p2' + (~3 - f,~)p3' (22) 

J 

The main results can be summarized as follows. 
1. At maximum information transmission, the analogs of thermo- 

dynamic entropy and Helmholtz free energy are, respectively, 

U = (t)/~- and F = 0 

2. If the prior distribution changes in such a way that 

p(aO>, /p(aO~ = (p(OV /p(O,) 

then 

-~u' = ( t ) '  - ( t ' )  

is an exact analog of the combined first and second laws of thermodynamics. 
3. An analog of the Gibbs equation holds for (t) ' .  If the prior distri- 

bution changes independently, this analog has the form (22). 

5. CONCLUDING REMARKS 

It seems reasonable to assume that maximum information transmission 
represents a favorable condition for living systems. The derivations in the 
preceding sections were therefore carried out mainly with regard to this con- 
dition. 

The approximation of a memoryless source renders this treatment 
applicable to ideal systems only. Here it means that the interactions of the 
source with the channel are weak enough for the probability distribution to be 
adjusted to only averaged requirements of the living system. "Averaged" 
means both with respect to time (the presumed absence of correlation among 
messages was virtually transferred to individual symbols) and with respect to 
the various kinds of utilization of the nucleotide pool. The limitation to an 
ideal system does not make the treatment useless, however. Important and 
useful results have been obtained by investigating ideal systems in statistical 
thermodynamics. It is hoped that the analogy with statistical thermody- 
namics observed in the foregoing sections will extend the applicability of the 
results presented here. 
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